Our best current science suggests that our universe is fine-tuned for life. That is to say, certain numbers in basic physics – e.g. the strength of gravity, the mass of electrons, etc. – are, against improbable odds, exactly as they need to be for life to be possible. Many scientists and philosophers think this is evidence for a multiverse, but I disagree. What we have evidence for us that our universe is fine-tuned and postulating a huge number of other universes doesn’t explain this.
I recently wrote a Scientific American article on this, and there have been two blog posts from Skeptics Guide to the Universe in response. Earlier this week, host Steve Novella and I got together to discuss the issue, and an edited version of our discussion will be going up on their podcast tomorrow. The discussion prompted me to clarify my argument in my own mind, and I’d like to share here how I’m thinking about it now.
Steve accuses me of committing the lottery fallacy. But what is the lottery fallacy? Suppose against improbable odds my lottery numbers come up. Clearly there’s something going wrong if I think there needs to be some special explanation of the fact that I won. Steve suggests that the error consists in focusing on the particular person who won – Philip Goff – rather than merely the fact that someone won. Similarly, by focusing on the fact that our universe – rather than just some universe – is fine-tuned, he thinks I’m committing the same fallacy.
I don’t think this is the right explanation of the lottery fallacy. Sometimes a focus on the particular person is appropriate. Suppose, for example, that the partner of the person who picked the numbers wins on a billion to one odds. Then it does seem we want to focus on the particular person who won.
What’s the difference between the two cases? The fact that Philip Goff won the lottery is improbable, but it’s not improbable that it happened by chance. Why is that? Because there’s no (non-ad hoc) non-chance hypothesis that would render it much more probable. Whereas when it comes to the fact that the partner of the person who picked the numbers won, this is just as improbable as Philip Goff winning, but in this case it’s not only improbable but improbable that it happened by chance. Why? Because there is a (non-ad hoc) non-chance hypothesis that would render it more probable, namely the hypothesis that there was collusion between the person who chose the numbers and her partner. Assuming that hypothesis, it’s much more likely that the partner would win that it is on the hypothesis that the numbers were picked randomly.
What about the fine-tuning case? I think we’re struck by the fine-tuning not because it’s improbable – whatever numbers had come up would be equally improbable – but because it’s improbable that it happened by chance. And, again, this is because there’s a non-chance hypothesis that would render it much more probable, namely the hypothesis that considerations of value were involved in determining the values of the constants. If the process that determined the constants was sensitive to the value of the resulting universe, then it wouldn’t be surprising that the constants would end up fine-tuned, much less surprising that it would be if they were selected at random.
So I don’t think the lottery fallacy is anything to do with focusing on the particular individual rather than the general fact; rather it’s a matter of fallaciously inferring from the fact that something is improbable to the fact it’s improbable that it happened by chance. But the fact that our universe in fine-tuned is not only improbable, it’s also improbable that it happened by chance. Therefore, focusing on the fact that our universe is fine-tuned – rather than that some universe is fine-tuned – does not commit the lottery fallacy.
So that’s why I don’t agree with Steve’s argument against my position. Let me try a different way of making the case for my position (this is a modified form of the argument White defends in the postscript to a reprint of this article). We can only gain support for a hypothesis with the evidence we in fact have. We can either think of evidence as our actual observations, or as the concrete, physical states of affairs we know about through observation. Whether you think of the fine-tuning evidence as our actual observations, or you think of it as the concrete fine-tuned physical universe we live in, in either case our evidence is not made more probable by the multiverse hypothesis. Yes, the existence of some fine-tuned universe is made more probable by that hypothesis. But we have to work with the evidence we in fact have, and the evidence we in fact have is constituted by the properties of this concrete, physical universe (or our observations of it), and this is not made more probable by the multiverse hypothesis
Many people have worried about the Joker analogy I make in my Scientific American article, on the grounds that, in this thought experiment, you pre-exist the flukey event. In the discussion I had with Steve, I got around this with a different thought experiment. Suppose your conception came about through IVF. And suppose you discover as an adult that when the doctor fertilised the egg, she rolled twenty dice to see whether she’d do it, committing only to fertilise the egg if they all came up sixes. Does your discovery that your birth was dependent on this improbable event provide you with evidence that the doctor did the same in many other IVF cases, rolling dice to decide whether to fertilise the egg? I don’t think so; all you have evidence for is that your conception was decided in this way, and whether or not the doctor did this in other cases has no bearing on how likely it was that the right numbers would come up with your conception. By analogy, all we have evidence for is that the right numbers came up for our universe, and whether or not there are other universes has no bearing on how likely it was that the right numbers came up for our universe.
In correspondence after our discussion, Steve proposed tweaking the thought experiment: suppose I’m considering whether the doctor rolled dice many times or only once to decide whether to fertilise the egg that made me. I agree in that case you would have evidence for that hypothesis, as that hypothesis makes *your* existence more likely, and your existence constitutes your evidence. But that modified IVF hypothesis corresponds to a sci fi scenario in which our universe had a number of shots at fixing its constants (i.e. random processes reset them numerous times) and the Guardian of the Universe only allowed it to proceed if they came up fine-tuned. That hypothesis would make our evidence (our fine-tuned universe) more likely. But that’s not the multiverse hypothesis. According to the standard multiverse hypothesis (eternal inflation + string theory) our universe had only one shot at fixing its constants. That corresponds to a scenario in which there is only one dice roll to determine whether the egg that produced you gets fertilised.
In our discussion, Steve came up with another thought experiment. Suppose the mischievous god Loki has just brought you into existence, and he tells you that he rolled twenty dice to decide whether or not to create a person, committing only to create a person if they all came up six (I’ve modified the example a little to make it similar to mine, but the substance is the same). Do you have grounds to think Loki has done this many times, on the assumption that each time he creates a person it’s a distinct person? I admit I did have to think about this one, and my intuitions are less firm that in the IVF case. So we need an explanation of why intuitions are different in these two cases. I suggest it’s because in the IVF case, it’s totally clear that the hypothesis I’m considering is one in which other babies would be born who aren’t me, whereas in the Loki case, it’s easy to slip into thinking he’s been having lots of shots at creating me. If I’m considering the scenario in which Locki had numerous shots at creating me, then I do find evidential support. But this is analogous to the tweaked IVF thought experiment in which the doctor rolled dice numerous times to decide whether to create me, and, as I argued above, this does not mirror the real-world fine-tuning case.
In summary: the fine-tuning is very puzzling, but it’s not evidence that we live in a multiverse.
Source link
Author Philip Goff